Edge functionalized germanene nanoribbons: impact on electronic and magnetic properties

نویسندگان

  • M. M. Monshi
  • S. M. Aghaei
چکیده

Germanene exhibits extremely high mobility, massless fermion behavior, and strong spin–orbit coupling drawing tremendous interest for high performance devices. It has a buckled two-dimensional structure, but not the intrinsic energy band gap and structural stability required for logic and switching devices. Application of a perpendicular electric field, surface adsorption, confinement of an armchair nanoribbon structure and edge functionalization are methods used to open a band gap. Edge functionalization of armchair germanene nanoribbons (AGeNRs) has the potential to achieve a range of band gaps. The edge atoms of AGeNRs are passivated with hydrogen (–H and –2H) or halogen (–F, –Cl, –OH, –2F, –2Cl) atoms. Using density functional theory calculations, we found that edge functionalized AGeNRs had band gaps as small as 0.012 eV when functionalized by –2H and as high as 0.84 eV with –2F. Formation energy studies revealed that AGeNRs produced a more stable structure under fluorine functionalization. Simulation results suggest that the electronic structure of germanene is similar to graphene and silicene. A spin-polarized density functional theory (DFT) study of electronic and magnetic properties of pristine, chemically functionalized and doped AGeNRs and zigzag nanoribbons (ZGeNRs) was performed. Formation energy studies revealed that the Ge atoms at the edge of the ribbon prefer to be replaced by impurity atoms. Doping can change the semiconducting behaviour of AGeNRs to metal behaviour due to the half-filled band making it useful for negative differential resistance (NDR) devices. In the case of ZGeNRs, single N or B doping transformed them from anti-ferromagnetic (AFM) semiconducting to ferromagnetic (FM) semiconducting or half-metal. These magnetic and electronic properties make edge functionalized doped AGeNRs and ZGeNRs promising for use in field effect transistors (FETs) and spintronics. Finally, energy band gap tuning of AGeNRs and ZGeNRs using edge functionalization may open a new route to integrate germanene in logic and high performance switching devices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Floquet edge states in germanene nanoribbons

We theoretically demonstrate versatile electronic properties of germanene monolayers under circularly, linearly, and elliptically polarized light. We show for the high frequency regime that the edge states can be controlled by tuning the amplitude of the light and by applying a static electric field. For circularly polarized light the band gap in one valley is reduced and in the other enhanced,...

متن کامل

Electronic properties of edge-functionalized zigzag graphene nanoribbons on SiO2 substrate.

Based on first-principles calculations, electronic properties of edge-functionalized zigzag graphene nanoribbons (ZGNRs) on SiO(2) substrate are presented. Metallic or semiconducting properties of ZGNRs are revealed due to various interactions between edge-hydrogenated ZGNRs and different SiO(2)(0001) surfaces. Bivalent functional groups decorating ZGNRs serve as the bridge between active edges...

متن کامل

Spin-polarized transport through a zigzag-edge graphene flake embedded between two armchair nanoribbons electrodes

We study the coherent spin-polarized transport through a zigzag-edge graphene flake (ZGF), using Hubbard model in the nearest neighbor approximation within the framework of the Green function’s technique and Landauer formalism. The system considered consists of electrode/ (ZGF)/electrode, in which the electrodes are chosen to be armchair nanoribbons. The study was performed for two types of ele...

متن کامل

Tunable Electronic and Topological Properties of Germanene by Functional Group Modification

Electronic and topological properties of two-dimensional germanene modified by functional group X (X = H, F, OH, CH₃) at full coverage are studied with first-principles calculation. Without considering the effect of spin-orbit coupling (SOC), all functionalized configurations become semiconductors, removing the Dirac cone at K point in pristine germanene. We also find that their band gaps can b...

متن کامل

Electronic and magnetic properties of zigzag graphene nanoribbons on the (111) surface of Cu, Ag, and Au.

We carry out an ab initio study of the structural, electronic, and magnetic properties of zigzag graphene nanoribbons on Cu(111), Ag(111), and Au(111). Both, H-free and H-terminated nanoribbons are considered revealing that the nanoribbons invariably possess edge states when deposited on these surfaces. In spite of this, they do not exhibit a significant magnetization at the edge, with the exce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017